AE465 Introduction to Aerial Robotics

Final Report

SPRING 2019/2020

Student Number – Surname, Name: 201616263 – EMRE, Mustafa Can Project Title: Scenario of an Aircraft Landing on a Moving Landing Ground

Contents

1.	Step	15	.1
	1.1.	Adding The Necessary Files Using Windows Explorer	.1
	1.2.	Creating The World with Atom Text Editor	.1
	1.3.	Phase 1 Design of the Attitude and Altitude Controllers	.1
	1.4.	Phase 2 Design of The Position Controller	.5
	1.5.	Phase 3 Determination of the Object Position In the World Coordinates	.9
	1.6.	Results of the Step 15	15
2.	Scen	ario of Aircraft Landing on a Moving Landing Ground	16
	2.1.	Adding the Necessary Files Usign Windows Explorer	16
	2.2.	Opening the New World File and Checking the Models	16
	2.3.	Changing the Simulink File for Desired Scenario	17
	2.4.	Results of the Sœnario	20

1. Step 15

1.1. Adding The Necessary Files Using Windows Explorer File opened from Ubuntu with the following code:

\$ explorer.exe.

And the files copy pasted to <u>\\wsl\$\Ubuntu-18.04\home</u>

1.2. Creating The World with Atom Text Editor "myiris.world" is created from atom text editor which is opened from Ubuntu.

1.3. Phase 1 Design of the Attitude and Altitude Controllers In this phase, a Simulink file will be created to control the attitude and altitude of the Iris quadcopter model. Simulink model is given below:

Simulink model for attitude and altitude controllers.

Detect 180 Discontinuity, Detect 180 Discontinuity1, Detect 180 Discontinuity2.

Altitude Controller.

Roll-Pitch Axes Transformer.

Altitude Controller.

Apply Rotor Torque(Rotor 1), Apply Rotor Torque(Rotor 2), Apply Rotor Torque(Rotor 3), Apply Rotor Torque(Rotor 4) subsystems.

1.4. Phase 2 Design of The Position Controller

We need position controller because even if the designed controllers seems to be working well for a short period of time it seems problematic for longer periods. In the phase 1 aircraft shifts.

Changed part of the Control Attitude & Altitude(now it is called Control Linear Position).

Subsystems:

XY Position Controller.

Results for Reference Linear Position = [0, 0, 3] :

Position of the Aircraft after 20 seconds.

X-Y-Z Positions-time Plots.

Roll-Pitch-Yaw Angle-time Plots.

Results for For Reference Linear Position = [2, -4, 3] :

X_	v	D	6	t
<u>^-</u>	r	ΡI	υ	ι.

X-Y-Z Positions-time Plot.

Roll-Pitch-Yaw Angle-time Plots.

1.5. Phase 3 Determination of the Object Position In the World Coordinates

In the previous phase, the reference values of linear position were given arbitrarily by using a constant block. In this phase, the x and y coordinates of this vector will be calculated automatically.

The following commands are merged and added to "myiris.world" using Atom Text Editor opened from Ubuntu:

```
<!-- UAV: Unmanned Aerial Vehicle -->
<model name="UAV">
<include>
<uri>model://my_iris</uri>
<static>false</static>
</include>
<include>
<uri>model://my_camera</uri>
<static>false</static>
<pose>0 0 0.014 0 1.5708 0</pose>
</include>
<joint name="camera_joint" type="fixed">
<child>UAV::camera::link</child>
<parent>UAV::iris::base_link</parent>
</joint>
<pose>0 0 0.3 0 0 0</pose>
</model>
<!-- Object -->
<model name="tote1">
<include>
<uri>model://grey_tote</uri>
<static>true</static>
</include>
<pose>0 0 0 0 0 1.5708</pose>
</model>
```


Final Look of the Simulink Model.

Weight Compensator block value is changed to 1.34.

Subsystems:

Reference XY Position Subsystem.

Reshape Colored Image block has the following code which is written from Matlab Command Panel:

function RGB = reshape_colored_image(Width,Height,Data)

channum = 3; % number of channels, R,G,B

RGB = zeros(Height, Width, channum, 'uint8');

if ~isempty(Data)&& ~isscalar(Data)

index = reshape(1:Width*Height*channum,[channum,Width*Height])';

RGB = reshape(Data(index), Width, Height, channum);

end

% result will be a height x width x channum image matrix

RGB = *permute*(*RGB*, [213]);

Calculate World Coordinates block has the following code which is written from Matlab Command Panel:

function obj_linpos =
img2world(body_linpos,body_angpos,body2cam_offset,obj2gnd_offset,obj_cencor,img_width,img_h
eight,img_fov)

% This function calculates world coordinates of object from its image coordinates

%

% INPUTS

% body_linpos: linear position of vehicle body

% body_angpos: angular position of vehicle body

% body2cam_offset: distance between body center of gravity and camera focal point

% obj2gnd_offset: distance between object top surface and ground surface

% obj_cencor: centroid coordinates of the objects in image plane

% img_width: width of image plane

% img_height: height of image plane

% img_fov: field of view

% Focal_Length = Width/(2*tan(Field_of_View/2))

%

% OUTPUTS

% obj_linpos: xy position of object in world coordinates

% calculate focal length

img_fl= img_width/(2*tan(img_fov/2));

% initialize object world coordinates

obj_linpos = zeros(2,1);

if ~(*obj_cencor*(1) == -1)

theta = -atan((obj_cencor(1)-0.5*img_width)/img_fl);

alfa = body_angpos(1) + theta;

obj_linpos(2) = body_linpos(2) + (abs(body_linpos(1))-body2cam_offset-obj2gnd_offset)*tan(alfa);
end

if ~(*obj_cencor*(2) == -1)

beta = -atan((obj_cencor(2)-0.5*img_height)/img_fl);

gamma = -body_angpos(2) + beta;

obj_linpos(1) = body_linpos(3) + (abs(body_linpos(1))-body2cam_offsetobj2gnd_offset)*tan(gamma);

end

Final Settings of the Third Phase:

Cont	ents of: r	nyiris/l	Reference XY Po	sition/Reshape Colored Imag	ge (only)	[Filter Contents		Data Data				
Column Vi	ew: Stat	eflow	•	Show Details			4 object	(s) 🍞	General	Description			
Name	Scope Input Output Input Input	Port 1 1 2 3 3	Resolve Signal	DataType Inherit: Same as Simulink Inherit: Same as Simulink Inherit: Same as Simulink	Size -1 [240,320,3] -1 -1	InitialValue	CompiledType uint32 uint8 uint32 uint8	Compiled 1 [240, 320 1 230400	Scope: Size: Complexity: First index Type: Inh Unit (e.g., r Inherit Limit rang Minimum:	Input Input Information Inform	Port: V V	3 ariable size	>> SI, English,
<	Cont	ents	_	Search Results		_		>			Revert	Help	Apply

Changes In the Model Explorer.

Column View: Stateflow 🔻			•	Show Details			4 object	(s) 👎	General Description						
1.59		I Marco an							Name:	RGB					
Name	Scope	Port	Resolve Signal	DataType	Size	InitialValue	CompiledType	Compiled	Scope:	Output	▼ Port: 1	2			
Width	Input	1		Inherit: Same as Simulink	-1		uint32	1	Data mi	st receive to signal object					
Height	Toput	1		Innerit: Same as Simulink	[240,320,3]		uinta uint22	1		st resolve to signal object					
Data	Input	3		Inherit: Same as Simulink	-1		uint8	230400	Size:	[240,320,3]	Variable size				
		-							Complexity:	Inherited	•				
									First index	Scalar					
									Type: Inh	erit: Same as Simulink	~	>>			
									Unit (e.g., n	n, m/s^2, N*m):		SI, English,			
									inherit						
									Limit rang						
								:	canne reing						
								-	Minimum:		Maximum:				

Changes In the Model Explorer.

biagnostic Viewer —		×	
Diagnostics			
🗐 🗸 🔚 🗸 🎇 🗸 🏹 🗶 🔍 search 🕆 🕀	0 -	G	2
myiris 📀			
Model Save (myiris) 07:38 AM Elapsed: 0.861 sec		Θ	1
Model Save (myiris) 07:40 AM Elapsed: 0.525 sec		8	
Model Save (myiris) 07:41 AM Elapsed: 0.489 sec		8	
Model Save (myiris) 07:43 AM Elapsed: 0.421 sec		8	
✓ Simulation ⊗ 1 07:43 AM Elapsed: 47 sec		0	
An error occurred while running the simulation and the simulation was terminated			
Caused by:			
 For output port 2 of 'myiris/Reference XY Position/Gazebo Read/SourceBlock', the method 	t i		
'outputImpl' of the System object 'robotics.slgazebo.internal.GazeboReadBlk' returns a	bus ty	pe	
whose field Gazebo_SL_Bus_gazebo_msgs_Image.data size does not match the field			
Gazebo_SL_Bus_gazebo_msgs_Image.data size defined in the method 'getOutputDataTypeImpl'	•		
Component: Simulink Category: Block error			-

Error While Reading the Data From Camera.

This error is fixed by the following command written on the Matlab Command Panel:

>> Gazebo_SL_Bus_gazebo_msgs_Image

>> Gazebo_SL_Bus_gazebo_msgs_Image.Elements.Name

>> Gazebo_SL_Bus_gazebo_msgs_Image.Elements(3)

>> Gazebo_SL_Bus_gazebo_msgs_Image.Elements(3).Dimensions = 230400;

>>Gazebo_SL_Bus_gazebo_msgs_Image.Elements(3).DataType = 'uint8';

>> Gazebo_SL_Bus_gazebo_msgs_Image.Elements(3).DimensionsMode = 'Variable';

Z Contents of: myiris (only)					Contents		Model P	Model Properties: myiris				
Column View:	Block Data Types 🔹	Show Deta	ils	17 of	35 object(s) 🖗	Main	Callbacks	History	Description	Data	
	Nama	PleckTune	OutDataTupeEtr	OutMin	OutMass	LockCook	Model callbacks			Model initialization function:		
Apply Rotor Apply Rotor Apply Rotor	Torque (Rotor1) Torque (Rotor2) Torque (Rotor3)	SubSystem SubSystem SubSystem					P Ir S P	ostLoadFcn hitFcn* tartFcn auseFcn				
점 Apply Rotor Configure C 점 Control Line	· Torque (Rotor4) Communication Parameters ear Position	SubSystem SubSystem SubSystem					C S P	ontinueFcn topFcn reSaveFcn				
Demux		Demux					P	ostSaveFcn				
Demux1		Demux					L L	IOSEFCI				
Pard Body	States	SubSurtam										
Scope	States	Scone										
Scope1		Scope										
Terminator		Terminator										
XY Graph		SubSystem										
Ph Reference >	(Y Position	SubSystem				1						
Mux		Mux										
Reference A	Altitude	Constant	Inherit: Inherit from 'Constant value'	п	П							
										٢		
							<					
<						>				Revert	Help Apply	
	Contents	S	earch Results									

Permanent Solution for Error While Reading the Data From Camera. Deleted afterwords becaus it seems like there are some errors.

1.6. Results of the Step 15

Position of the Aircraft after 20 seconds.

承 Video Viewer	_		×
File Tools View Simulation Help			ъ
🚯 🚯 💁 🕰 🔍 🖤 🖾 100%	~		
⊙ ▶ 🔳 🗦 🚳			
Ready	I:240x32	0	Γ=20.000

Final look of the Video Viewer after 20 seconds.

-	Scope															- C	×
Fil	e Tools	View Sim	ulation Help														×
0	- 🍪 (N N	- Q -	J - #	- 🐼												
									X-Pos	ition, Y-Pos	ition, Z-Positio	n					۲.
ſ										, I							
3																	
0.5																	
2.0																	
2																	
1.5																	
1																	
0.5	/																
0																	
0	_		2	4			6	_8	i	_1()	12	1	4 1	6	18	20
Rea	dy															Sample base	d T=20.000
E	۶	o 🔒	8	٥	е	92	. 0	8	0	\$	🛃 🤇	-	\$		^ <i>(ii</i> , �)) 📰	TUR 07:59 21.06.20	20

X-Y-Z Positions of the Aircraft after 20 seconds.

2. Scenario of Aircraft Landing on a Moving Landing Ground

The goal of this phase is an aircraft will follow a moving landing ground for 30 seconds and after 30 seconds it will start to lower its altitude and land on landing ground.

2.1. Adding the Necessary Files Usign Windows Explorer

 $\label{eq:File} File \ opened \ from \ Ubuntu \ with \ the \ following \ code:$

\$ explorer.exe.

And the files pasted to <u>\\wsl\$\Ubuntu-18.04\home\</u>

From now on "myheliport.world" world file will be used.

2.2. Opening the New World File and Checking the Models World file opened from Ubuntu using Gazebo with following code:

\$ gazebo ~/.gazebo/worlds/myheliport.world --verbose

Initial Look of the World File.

Changing the Simulink File for Desired Scenario 2.3.

Final look of the simulink file.

For flying at 3m altitude "Reference Altitude" constant block is deleted and a ramp block is added with following parameters.

Slope: -0.1

Start Time: 30

Initial Output: 3

These are the initial values but aircraft lost sight of the landing ground as it get closed to the landing ground so the parameters are changed as below:

Slope: -0.5

Start Time: 30

Initial Output: 3

With these parameters aircraft lands faster but makes a successful landing so these parameters are used.

Block Parameters: Reference Altitude	×
Ramp (mask) (link)	
Output a ramp signal starting at the specified time.	
Parameters	
Slope:	
-0.5	:
Start time:	
30	:
Initial output:	
3	:
☑ Interpret vector parameters as 1-D	
OK Cancel Help	Apply

Final look of the Reference Altitude block.

The block parameter in the Reference XY Position /Compare to Constant's changed to 30 because if the aircraft falls behind to the landing ground camera senses the sides of the landing ground as the surface of the landing ground loses its stability. Initial value was 105.

🔀 Block Parameters: Compare To Constant	×								
Compare To Constant (mask) (link)									
Determine how a signal compares to a constant.									
Parameters									
Operator: <	•								
Constant value:									
30	E								
Output data type: boolean	•								
☑ Enable zero-crossing detection									
OK Cancel Help App	y								

Final look of the Compare to Constant block.

2 PID Controller block are added to the Control Linear Position/XY Position Controller subsystem. Because as the aircraft gets closer to the surface of the landing ground it starts to lose sight of the landing ground so PID Controllers are added for faster response.

😼 Block Parameters: PID Controller	×
PID 1dof (mask) (link)	
This block implements continuous- and discrete-time PID control external reset, and signal tracking. You can tune the PID gains at Design).	algorithms and includes advanced features such as anti-windup, tomatically using the 'Tune' button (requires Simulink Control
Controller: PI 🔹	Form: Parallel
Time domain:	Discrete-time settings
Continuous-time	Completime (1 for inherited)
O Discrete-time	Sample time (-1 for inherited): -1
Compensator formula	
Main Initialization Output Saturation Data Types S	tate Attributes
Controller parameters	
Source: internal	•
Proportional (P): 0	1
Integral (I): 0	1
Automated tuning	
Select tuning method: Transfer Function Based (PID Tuner App	•) • Tune
Enable zero-crossing detection	
	· · · · · · · · · · · · · · · · · · ·
	OK Cancel Help Apply

Parameters of the PID Controllers.

The parameters of the Maximum Allowable Pitch Angle and Max. Allowable Roll Angle are changed as below for better and faster reaction for aircraft.

🎦 Block	Block Parameters: Maximum Allowable Pitch Angle X								
Saturation									
Limit input signal to the upper and lower saturation values.									
Main	Signal Attributes								
Upper lir	nit:								
20		:							
Lower lir	nit:								
-20		:							
🗹 Treat	as gain when linearizing								
🗹 Enabl	e zero-crossing detection								
0	OK Cancel Help Apply	/							

Both of blocks Maximum Allowable Pitch Angle and Max. Allowable Roll Angle blocks are set as above.

Final look of the XY Position Controller block.

2.4. Results of the Scenario

Aircraft landed on the landing ground as planned but when it touches the surface it does not stop the rotors so after 5 seconds it starts to move. So scenario is successfuly completed.

Look of the aircraft when it is close to the surface of the landing ground.

Look of the aircraft as it lands.

Look of the aircraft after it is landed.

X-Y-Z position graph of the aircraft.

X-Y position graph of the aircraft.

Roll-Pitch-Yaw angle graph of the aircraft.